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H I G H L I G H T S

• Hybrid energy management is adopted for networked microgrids.

• Risk control is incorporated by introducing mean–variance Markowitz theory.

• Two-stage energy management is proposed to improve control accuracy.

• Uncertainties existing in the system are fully addressed.
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A B S T R A C T

Networking of microgrids has received increasing attentions in recent years, which requires the uncertainty
management associated with variations in the system. In this paper, a two-stage energy management strategy is
developed for networked microgrids under the presence of high renewable resources. It decomposes the mi-
crogrids energy management into two stages to counteract the intra-day stochastic variations of renewable
energy resources, electricity load and electricity prices. In the first stage (hourly time scale), a hierarchical
hybrid control method is employed for networked microgrids, aiming to minimize the system operation cost. The
mean–variance Markowitz theory is employed to assess the risk of operation cost variability due to the presence
of uncertainties. In the second stage (5-min time scale), the components in microgrids are optimally adjusted to
minimize the imbalance cost between day-ahead and real-time markets. Simulation study is conducted on an
uncoordinated microgrids system as well as on the proposed networked system. According to the simulation
results, the proposed method can identify optimal scheduling results, reduce operation costs of risk-aversion, and
mitigate the impact of uncertainties.

1. Introduction

Heightened concerns about energy resource limits, climate change,
as well as increasing energy prices, has led countries to increased in-
tegration of renewable energy sources (RESs) into modern power sys-
tems, primarily in the form of solar photovoltaic panels and wind tur-
bines [1]. A transition from fossil-based and non-renewable fuels to
renewable and sustainable energy is occurring around the world [2]. By
the end of 2017, the global installed renewable capacity has reached
2180 GW, with solar capacity being around 390 GW and wind power
capacity over 500 GW [3] In such a situation, microgrids (MGs), a
cluster of various distributed generators, energy storage systems, loads
and other onsite electric components, are emerging as an effective way

to integrate the RESs in distribution networks and satisfy the end-user
demands [4]. Microgrids have a critical role to play in transforming the
existing power grid to a future smart grid, which usually operate in
grid-connected modes to maximize benefits, and can also operate in
islanded modes for enhancing system reliability in grid outage periods
[5]. Multiple microgrids can be connected to form a networked system.
Compared with the traditional individual microgrid, networked mi-
crogrids possess the capability of decreasing the network operation cost
in grid-connected modes and reducing the amount of load shedding in
islanded modes [6].

Energy management system (EMS) is used for optimally scheduling
power resources and energy storage systems in microgrids to maintain
supply-demand balance [4]. Numerous studies have examined the
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intelligent energy management of networked microgrids, which can be
categorized into centralized EMS, decentralized EMS, and hybrid EMS
based on the architecture. For instance, Olivares et al. present a cen-
tralized EMS for isolated microgrids, which use model predictive con-
trol technique to allow a proper dispatch of the energy storage units
[7]. Wang et al. propose a decentralized energy management system for
the coordinated operation of networked microgrids in a distribution
system, which aim to minimize the operation cost in the grid-connected
mode and maintain a reliable power supply in the island mode [8].
Wang and Mao investigate a hierarchical power scheduling approach to
optimally manage power trading, storage, and distribution in a smart
grid composed of a macrogrid and cooperative microgrids [9]. The
merits and demerits of the three prevailing EMSs have been compared
and summarized in [10].

Alternately, considering the increasing penetration of RESs, new
challenges have been imposed on the scheduling of microgrids. RESs
(i.e. solar and wind power) are intermittent and stochastic, which
highly depend on environmental factors like solar irradiance and wind
speed. Due to the uncertainty of renewable energy resources, un-
certainty management in scheduling of MGs has become an active re-
search area recent years. Commonly adopted methods in the literature
for MGs uncertainty management are robust optimization [11–14] and
stochastic optimization techniques [15,16]. Kuznetsova et al. present a
robust optimization based optimal energy management strategy to
improve system operation performance [11]. In [12], Gupta develops a
robust optimization approach to accommodate wind power uncertainty
and achieve cost minimization in MGs. In [13], a robust optimization
approach is proposed to optimally operate MGs. By collaboratively
scheduling energy storage and direct load control, the uncertain out-
puts of RESs are addressed. By reviewing the literature, it can be found
that most works on MGs scheduling by robust optimization method

focus on single microgrid operation. However, the form of networked
MGs is emerging given its unprecedented benefits, which requires the
optimal operation of MGs with uncertainty management taken into
account. Under this circumstance, Hussain et al. design a robust opti-
mization based scheduling method for multi-microgrids considering
uncertainties in RESs and forecasted electric loads [14].

Stochastic optimization has also been widely used in the planning,
operation, and control of MGs. Liang and Zhuang [15] present a de-
tailed survey about stochastic modeling and optimization in a micro-
grid. In this survey, the key features of MGs are investigated and a
comprehensive review on stochastic modeling and optimization tools
for MGs is provided. In [16], a multi time-scale and multi energy-type
coordinated microgrid scheduling solution is proposed. In the day-
ahead scheduling model, the uncertainties of RESs are represented by
multiple scenarios and the EMS objective is to minimize the microgrid
operation cost. In a real-time dispatch model, the fluctuations of RESs
are smoothed out by cooling loads and electrical energy. The prominent
defects of applying stochastic optimization on MGs uncertainty man-
agement are the high computational requirements when the number of
scenarios increases, as well as only providing probabilistic guarantees
for constraint satisfaction [5]. In contrast, robust optimization is im-
mune against all possible realizations of uncertain data within the un-
certainty sets. However, shortcomings also exist in this method.
Through optimizing the worst-case scenario, robust optimization ap-
proaches could result in over-conservative results in MGs operation
[14].

Review of the literature has identified that some issues remain open
in the scheduling and dispatching of MGs. In [11–13,16], the un-
certainty management is conducted in an individual microgrid without
realizing the emerging trends of networked MGs; and in others, al-
though the uncertainty of RESs are considered in networked MGs, the

Nomenclature

Abbreviations

BESS battery energy storage system
CDG controllable distributed generator
DSO distribution system operator
EMS energy management system
MG microgrid
MGC microgrid community
RES renewable energy sources
SOC state of charge
VaR value-at-risk

Indices

t index of time (t =1, 2, …, T)
i index of microgrid (i =1, 2, …, I)
C index of microgrid community
k index of scenario (k=1, 2, …, ΩK )

̂( • ) index of variables in real-time market

Parameters

aCG/bCG cost coefficients of CDG
aCL/bCL cost coefficients of controllable load
Ct

CG operation cost of CDG
Ct

ES operation cost of BESS
Ct

CL the cost of controllable load
Cit

M exchanged power cost of the ith microgrid
Ct

C M, Cost of exchanged power in MGC
ER

ES rated capacity of BESS

Et
ES stored energy in BESS at time t

ICES investment cost of BESS
LCN BESS total life cycle number
ηES Dis, /ηES Chr, BESS discharging/charging efficiencies

PCG/ PCG lower/upper limits of CDG power output
Pt

L electricity load
Pit

RES forecasted renewable power
P ES Dis, /P ES Chr, upper limits of BESS discharging/charging power

Pi
M/Pi

M lower/upper limits of exchanged power
PExch/ P Exch lower/upper limits of interconnection exchange be-

tween a MGC and distribution network
ρit price of exchanged power at time t
ρt

C price of exchanged power between MGC and the dis-
tribution network

RampCG
Up/RampCG

Up ramping up/down limits of CDG
SOC/SOC lower/upper limits of state of charge
SUCit

CG/SDCit
CG Start-up/shut-down costs of CDG

γES battery lifetime depression coefficient
ς/ς minimum/maximum ratio of controllable load

Variables

Pt
CG CDG power output

P P/t
ES Dis

t
ES Chr, , BESS discharging/charging power

Pt
CL the amount of controllable load

Pit
M exchanged power of the ith microgrid

Pt
C M, exchanged power amount between MGC and the dis-

tribution network
χt

CG commitment status indicator of a CDG
χ χ/t

ES Dis
t
ES Chr, , BESS discharging/charging indicator

χt
SU / χt

SD start-up/shut-down indicator of a CDG
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authors only include it in day-ahead scheduling [14], but ignore RESs
dynamic fluctuations in real-time operation. As for the uncertainties in
MGs, most of the researchers only consider RESs output uncertainty and
electric load uncertainty, and neglect the uncertainty in forecasted day-
ahead electricity prices. Moreover, although stochastic optimization has
been widely used in MGs energy management, to the best of the au-
thors’ knowledge, no researchers have carried out in-depth analysis of
risks as well as their impacts on the scheduling and dispatch of net-
worked MGs. Farzan et al. develop stochastic programming optimiza-
tion models to optimally schedule MGs under uncertainty with risk
neutral and risk averse options. Nevertheless, they only focus on the
individual microgrid, without conducting risk analysis on networked
microgrids.

Given no previous research have considered the above concerns in
one work before, a comprehensive research on the noted issues is ne-
cessary for the economic and stable operation of networked MGs To
close this research gap, this work is focused on developing a two-stage
energy management strategy for networked microgrids under high
penetration of RESs. Compared with previous microgrid scheduling and
dispatching approaches, the distinguished features of the proposed
method in this paper are summarized as follows:

(1) A hybrid energy management strategy is adopted for multi MGs.
The individual microgrid is networked and regulated by a microgrid
community (MGC) for enhancing the capability to accommodate
the RESs fluctuations and improving layered privacy.

(2) Based on the mean-variance Markowitz theory [17], a risk com-
ponent is introduced into the optimal energy management of a MGC
to estimate profit. The risk-based decision making could greatly
influence the scheduling and dispatching results in MGs.

(3) A two-stage senergy management strategy is proposed for net-
worked microgrids considering the uncertainties of RESs outputs,
electricity load and day-ahead prices. The operation costs are
minimized in day-ahead scheduling control based on a hierarchical
optimization method. The dynamic fluctuations of RESs and vola-
tility of electricity load are smoothed out in the real-time dis-
patching stage.

The remainder of this paper is organized as follows. Section 2 pre-
sents the problem description. Section 3 introduces the components
modeling. Section 4 provides the mathematical formulation of optimal
networked MGs operation. Section 5 describes the numerical simula-
tions to demonstrate the effectiveness of the proposed approach. Sec-
tion 6 concludes the paper and suggests future research challenges.

2. Problem description

In this section, the problem is briefly described, which includes the
components and configuration of networked MGs, and the proposed
operational strategy in this paper.

2.1. Components and configuration of networked MGs

The basic components of a microgrid consist of RESs (i.e. photo-
voltaics system and wind turbine), controllable distributed generators
(CDGs), battery energy storage systems (BESSs), and electric loads (i.e.
both controllable and non-controllable loads). RESs are able to generate
clean and sustainable energy; CDGs, such as micro turbines, can provide
stable energy to meet MGs energy demand. BESSs can shift energy to
alleviate energy management difficulties through adjusting charging/
discharging status; the controllable part in electric loads can help
maintain power balance through demand response programs. From the
perspective of a microgrid, the general objective in grid connected
mode is to minimize the operation cost or maximize the total benefit
under certain operational constraints.

In practical scenarios, some geographically adjacent microgrids

need to be coordinated controlled as a whole for certain goals, such as
economy and reliability [18]. The rapid development of microgrids also
leads to the emergence of microgrid community. In view of the merits
and promising applications of MGC in recent years [19], the microgrids
in this paper are networked under the regulation of MGC. As shown in
Fig. 1, the individual MGs are connected in the MGC with close inter-
action among each other. Microgrids in MGC belong to different owners
and may have different operation goals. A MGC consists of several
microgrids and microgrid community level devices, including commu-
nity distribution generation units and community BESS. Compared with
an individual microgrid, a MGC has to consider the topology for in-
terconnecting microgrid and has more levels of control to efficiently
manage microgrids and community level devices. The distinct features
and benefits of a MGC have been detailed in [19]. Note that the energy
management in the MGC is achieved in a hybrid way, with better
performances than completely decentralized control and centralized
control. According to [10], the hybrid EMS is emerging as a trade-off
between centralized EMSs and decentralized EMSs. It has better flex-
ibility compared with centralized EMSs and lesser operation cost
compared with decentralized EMSs.

2.2. Proposed strategy

In this paper, a two-stage energy management strategy is proposed
for networked microgrids with high renewable penetration. The overall
objective aims to minimize the operation cost of networked microgrids
in grid connected modes and predefine the revenue risk into a certain
level.

At the first stage, a day-ahead hourly scheduling is formulated for
networked microgrids. In this stage, a hierarchical optimization
strategy is adopted for the energy management of MGC. In the lower
level, the optimization is focused on the individual microgrid and the
objective is to minimize its operation cost. In this level, the problem is
formulated as a deterministic issue without considering uncertainties in
the microgrid. Through using the forecasted RESs output power, elec-
trical load and electricity price, the lower level EMS determines the
commitment status of CDGs, charging/discharging status of BESSs, and
the shift or curtailment of controllable loads. Moreover, the exchanged
power between the microgrid and MGC will be determined.

The upper level is to minimize the operation costs of the entire MGC
with revenue risk considered. The uncertainties of each microgrid are
collectively considered in the energy scheduling of microgrid commu-
nity. Uncertainties including renewable resources and loads in in-
dividual microgrid are broadcast to microgrid community via in-
formation flow channels, and further incorporated into the risk control
of networked microgrids. In addition, the uncertainties of electricity
prices are taken into account at this level. The upper level EMS makes
decisions about the power schedules of community level devices and
the exchanged power with the utility grid.

At the second stage, a real-time dispatch is executed to balance the
dynamic random fluctuations of renewables and load at 5min temporal
resolution. The real-time dispatch is required to minimize the im-
balance cost considering the deviation between the day-ahead elec-
tricity and real-time electricity markets. A rolling horizon optimization
strategy is employed in this stage for online optimization to enhance the
control accuracy. The detailed procedures in each stage and their
mathematical modelling are described in Section 4.

3. Components modeling

In this section, the modeling of various components in microgrids is
given first, followed by the modeling of uncertainties and electricity
market.
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3.1. Cdgs

CDGs are flexible components in a microgrid, which may refer to
micro turbines, fuel cells, diesel generators, and other types of gen-
eration devices. In this paper, we use micro turbines to represent CDGs,
whose fuel cost can be formulated as a linear function [12]:

= +C χ a b Pt
CG

t
CG CG CG

t
CG (1)

For other types of CDGs, such as diesel generators and gas-fired
power generators, the fuel cost can be formulated as a quadratic
function, which can be further approximated using piecewise linear
functions.

The operation of a CDG should satisfy the following ramp rate limits
and power constraints at each time period at each MG:

⩽ ⩽ ∈P χ P P χ χ; {0, 1}CG
t
CG

t
CG CG

t
CG

t
CG (2)

⎧
⎨
⎩

− ⩽

− ⩽
−

−

P P Ramp

P P Ramp
t
CG

t
CG

CG
Up

t
CG

t
CG

CG
Down

1

1 (3)

+ ⩽ ∈χ χ χ χ1; , {0, 1}t
SU

t
SD

t
SU

t
SD (4)

− ⩽ −−χ χ χ χt
CG

t
CG

t
SU

t
SD

1 (5)

where χt
SU , χt

SD are the start-up, shut-down indicator of a CDG (1 means
it is in operation and 0 means it is not). Eq. (2) is the power constraints,
Eq. (3) is the ramp rate limits, Eq. (4) shows that a CDG cannot be
started up and shut down simultaneously at any time, Eq. (5) shows the
relationship between the start-up indicator and shut-down indicator.

3.2. Besss

According to [20], the operation cost of BESSs usually refers to the
maintenance cost, which can be formulated as a linear function as:

= + +C γ P t γ E t γ P tΔ Δ Δt
ES ES

t
ES Dis ES

t
ES ES

t
ES Chr, , (6)

where, tΔ is the time duration for converting power to energy. γES is
calculated as [20]:

=γ IC
E LCN·( )

ES
ES

R
ES (7)

BESSs should meet the following constraints during their operation:

= − ++E E P t η P tηΔ / Δt
ES

t
ES

t
ES Dis ES Dis

t
ES Chr ES Chr

1
, , , , (8)

=SOC E E/t t
ES

R
ES (9)

⩽ ⩽SOC SOC SOCt (10)

⎧
⎨
⎩

⩽ ⩽

⩽ ⩽

P χ P

P χ P

0

0
t
ES Dis

t
ES Dis ES Dis

t
ES Chr

t
ES Chr ES Chr

, , ,

, , ,
(11)

+ ⩽ ∈χ χ χ χ1; , {0, 1}t
ES Dis

t
ES Chr

t
ES Dis

t
ES Chr, , , , (12)

= =E E if t 1t
ES

INIT
ES (13)

where, SOCt is BESS state of charge (SOC) at time t; EINIT
ES is the initial

stored energy in a BESS. Eq. (8) shows BESS capacity change, which
includes net energy injection and energy losses during charging/dis-
charging process. Eqs. (9) and (10) define the BESS state of charge
constraints. Eq. (11) limits BESS charging/discharging power capacity.

Upper Level 

Lower Level

MG 1

Utility grid

Microgrid community

WT PV

LoadsCDG

MG 2
WT PV

LoadsCDG

MG nWT PV

LoadsCDG BESS SSEBSSEB

Power flow Information flow

MG1-EMS MG2-EMS MGn-EMS

Community CDG Community BESS
Forecasted RESs 
output in MGs

Forecasted electricity 
load in MGs

Community EMS

Fig. 1. The structure of networked microgrids.
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Eq. (12) means that a BESS cannot operate in charging mode and dis-
charging mode simultaneously. Eq. (13) shows the initial energy stored
in a BESS.

3.3. Controllable load

Demand response programs are considered in the EMS strategy for
adjusting the peak load demand. The controllable load cost is assumed
to be a function of controllable load amount and can be represented by
a linear function given in [21]:

= +C a b Pt
CL CL CL

t
CL (14)

The maximum ratio of controllable load is constrained by:

⩽ ⩽ςP P ςPt
L

t
CL

t
L (15)

3.4. Uncertain sets of RESs, load, and electricity prices

In this paper, RESs output, electricity load, and electricity price are
regarded as uncertainties. The historical data in day-ahead market are
used as correlated scenarios, hence allowing the correlated probability
distributions to be estimated based on the statistical correlations among
these uncertainties. Time-series-based methods, such as autoregressive
integrated moving average model, are adopted here to generate corre-
lated scenarios [22]. Wind power and solar power forecast errors can be
modelled by the Beta distribution [23]:

= −− −f P λ λ P P N(Δ ; , ) Δ (1 Δ )RES RESλ RES λ
1 2

1 11 2 (16)

where, PΔ RES is RESs output forecast error; λ λ,1 2 are the Beta dis-
tribution shape parameters; N is the normalization error. Electricity
price and load forecast errors can be modelled by the Gaussian dis-
tribution [20]:

= ⎡
⎣⎢

− ⎤
⎦⎥

f x μ σ
πσ

x μ
σ

(Δ ; , ) 1
2

exp
(Δ )

2x x
x

x

x

2
2

2

2
(17)

where, xΔ is electricity price or load forecast error; μ σ,x x
2 are the mean

and standard deviation.

3.5. Market model

In a MGC system, power transactions are conducted between mi-
crogrids and MGC, MGC and the distribution system operator. Two
different electricity price mechanisms are set among microgrids, MGC
and distribution system operator. In the view of distribution system
operator, MGC is regarded as a price-taker, meaning that the electricity
price between MGC and distribution system operator will not be in-
fluenced by the scheduling strategy and be determined by the elec-
tricity market. The market price is uncertain and denoted by the above
mentioned electricity price uncertain set. As for the electricity strike
price between MGC and microgrids, the bilateral contract is built to
reflect market participation. The market bidding strategies include
many complex economic problems and are settled based on electricity
generation, electricity load, and time-of-use electricity prices. The de-
tailed steps for making the bilateral contract can be found in [19],
which are not detailed here.

4. Proposed two-stage operation model

This section describes the mathematical formulation of the proposed
two-stage operation model. The first stage is an hourly day-ahead op-
timal scheduling model, and the second stage is 5-min real-time dis-
patch model.

4.1. Hourly day-ahead optimal scheduling model

In this stage, considering the hierarchical control structure of a
MGC, the hourly day-ahead scheduling is conducted by a two-level
hierarchical control for the EMSs. The control structure is composed of
the lower level microgrid energy management and the upper level MGC
energy management, which is described below.

4.1.1. Lower level EMS
Objective function: The objective of the lower level EMS is to

minimize the operation cost of individual microgrids in the MGC while
satisfying some equality and inequality constraints, as shown below:

∑= ⎡

⎣
⎢

+ + +

+ +
⎤

⎦
⎥

=

f
C SUC χ SDC χ

C C C
min

( )

t

T
it
CG

it
CG

it
SU

it
CG

it
SD

it
ES

it
CL

it
M1

1 (18)

The objective function in the individual microgrid is in a similar
form with previous research [8,19], which is composed of four terms:
the fuel consumption cost, the BESS operation cost, the controllable
load cost, and the exchanged power cost. Notably, the fuel consumption
cost includes the generation, startup, and shutdown costs of CDG.

The exchanged power cost of the ith microgrid is calculated as:

=C ρ Pit
M

it it
M (19)

where ρit is the price of exchanged power at time t, which can be de-
rived from the bilateral contract. It is worth noting that when >P 0it

M ,
Pit

M refers to the surplus power and ρit refers to the selling price; when
<P 0it

M , Pit
M refers to the power shortfall and ρit refers to the buying

price.
The calculation of Pit

M is defined as:

= + − + + −P P P P P P Pit
M

it
CG

it
ES Chr

it
ES Dis

it
RES

it
CL

it
L, , (20)

Constraints: To guarantee the stable operation of the MG, some
equality and inequality constraints should be met.

(1) Power balance constraints:

For each MG, the total power generation from local sources and
BESS should equal to the local demand and exchanged power with
other MGs.

+ − + = + −P P P P P P Pit
CG

it
ES Chr

it
ES Dis

it
RES

it
M

it
L

it
CL, , (21)

(2) CDG constraints:

The operation of a CDG is limited in (2)–(5).

(3) BESS constraints:

The operational constraints of a BESS are specified in (8)–(13).

(4) Controllable load constraints:

The controllable load amount is constrained by the minimum and
maximum ratios defined in (15).

(5) Exchanged power constraints:

The exchanged power should be constrained by:

⩽ ⩽P P Pi
M

it
M

i
M (22)

After the optimization, the lower level EMS can decide the unit
start-up/shut-down schedule of CDGs, charging/discharging status of
BESS, shift or curtailment amount of controllable load, and the ex-
changed power at each time interval.

D. Wang et al. Applied Energy 226 (2018) 39–48

43



4.1.2. Upper level EMS
Objective Function: Similarly, the objective of the upper level EMS

is to minimize the operation cost of a MGC by running a global opti-
mization. In the meantime, given the uncertainties in the whole system,
a risk control measure is introduced.

∑= ⎛

⎝
⎜

+ +

+ +
⎞

⎠
⎟

=

f
C SUC χ SDC χ

C C
min

( )

t

T
t
C CG

t
C CG

t
C SU

t
C CG

t
C SD

t
C ES

t
C M2

1

, , , , ,

, ,
(23)

where C represents MG community. In the upper level objective func-
tion, there are three terms: the MG community fuel consumption cost,
community BESS operation cost, and the cost of exchanged power with
distribution system operator. Specially, the definitions of Ct

C M, and Pt
C M,

are given by:

=C ρ Pt
C M

t
C

t
C M, , (24)

∑ ∑ ∑= + + + − −
= = =

P P P P P P P( )t
C M

t
C CG

t
C ES

i

I

it
RES

i

I

it
M

i

I

it
L

it
CL, , ,

1 1 1 (25)

The uncertainties of RESs forecasting and electricity load fore-
casting in microgrids are combined managed in MGC, as observed in
(25).

Given the uncertainties in the whole system, we formulate (23) into
a probabilistic version to mitigate risky decision making. In addition, to
improve the computational efficiency, the initial large set of scenarios is
trimmed to a small number of representative scenarios. In this paper, an
efficient scenarios reduction technique, i.e. backward method [23], is
adopted to approximate the original scenario set. The risk associated
with the cost variability is explicitly captured in the model through the
mean-variance Markowitz theory [17]. Eq. (23) can be rewritten in a
probabilistic version as:

+E O ϖ σmin [ ] · O1 1 (26)

where E O[ ]1 is the expected operation cost, σO1 is the standard devia-
tion, ∈ +∞ω [0, ] is the weighting factor for the inclusion of risk in the
objective function. It should be noted that the higher the value of ϖ , the
more risk averse. When ϖ =0, the strategy is risk neutral. The calcu-
lations of E O[ ]1 and σO1 are given by:

∑=
∈

E O f[ ] Pr ·
k

k k1
Ω

2
K (27)

∑ ∑= − = −⎛

⎝
⎜

⎞

⎠
⎟

∈ ∈

σ E O E O f f[ ] [ ] Pr · Pr ·O
k

k k
k

k k
2

1
2 2

1
Ω

2
2

Ω
2

2

K K
1

(28)

where Prk is the probability of scenario k, f k2 refers to the cost function
f2 under scenario k, ΩK is the set of reduced representative scenarios.
The linearization of quadratic function in (28) has been widely in-
vestigated in the literature [24–26], therefore it is not detailed here.

Constraints: In each scenario k, some equality and inequality
constraints should be met for the stable operation of a MGC. The CDG
constraints and BESS constraints are the same with the lower level EMS,
i.e. (2)–(5), (8)–(13). The different parts with the lower level EMS are
given below:

1) Power balance constraints:

∑ ∑ ∑+ + = − + −
= = =

P P P P P P P( )tk
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itk
CL, ,

1

,

1 1 (29)

2) Exchanged power constraints:

⩽ ⩽P P PExch
tk
C M Exch, (30)

After performing the global optimization, the upper level EMS can

decide the unit commitment of community CDGs, charging/discharging
status of community BESSs, and the power exchange amount with the
distribution network.

4.2. 5-minute real-time dispatch model

In real-time dispatch, the dynamic fluctuations of RESs and the
volatility of electricity demand are accommodated in the operation of
microgrids. Note that the real-time dispatch interval could be any short
uniform time interval (e.g. 15-min interval and 5-min interval). In this
paper, the proposed dispatching interval is assumed to be 5min. For
real-time electricity dispatch, a rolling horizon optimization strategy is
employed to derive a more accurate value [16]. In rolling horizon op-
timization scheme, the model inputs are updated at each time step. And
at each time step, the model is optimized, with the schedule results
derived for all the remaining intervals. Under this circumstance, the
schedules in the first interval are mandatory, while the other intervals
are only used as references. At the next time step, the control window is
moved forward, updating the model inputs and repeating the above
procedures until the end of time horizon [27]. As the time scale is
5 min, the time window of the dispatch covers 288 intervals (i.e. 24 h).

In this stage, the objective is to minimize the imbalance cost owing
to the deviation between the first stage day-ahead electricity market
and the second stage real-time electricity market, defined in a similar
form as [28]:

̂∑= −
=

f C Cmin ( )
t

NT

t
C M

t
C M

3
1

, ,

(31)

where NT is the total number of dispatch intervals in the real-time
market; ̂Pt

C M,
is the real-time dispatched power; ̂Ct

C M,
is the cost of

exchanged power in real-time market. Note that ̂( • ) is used to denote
the variables in real-time market. The calculation of ̂Ct

C M,
is given in

(32), (33):
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The complete constraints of (31) include (2), (5), (8)–(13), and (15).
In real-time dispatch, slight imbalances in each interval can be handled
by automatic generation control or emergency demand response (i.e.,
instantaneous control).

The step-by-step procedure for carrying out the whole optimization
is summarized in Fig. 2. The formulated problems are based on mixed
integer linear programming, which can be easily implemented through
commercial software like CPLEX and academic software like MATLAB.

5. Case studies

5.1. Set up

The proposed approach is tested on an artificial situation, which is
based on a modified MGC system composed of three MGs in [29]. The
system configuration is denoted in Fig. 1 as well, specifying the power
flow and information flow direction. By verifying the proposed method
in an academic microgrid community, it could verify the feasibility of
applying the approach into more complex real microgrid community
applications in future. For instance, a university can be regarded as a
microgrid community connected to a low voltage grid. Hospitals, stu-
dent apartments, dining rooms, etc., equipped with renewable re-
sources, BESSs, and CDGs can be taken as geographically adjacent mi-
crogrids in the microgrid community.
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The load in microgrids mainly includes domestic appliances,
lighting load, air-conditioning load in the buildings, and system de-
vices, such as SCADA device and server. It is assumed that controllable
load, such as thermostatically controlled load, exists in every microgrid
and the minimum/maximum ratios are set to be 0 and 20%. The cost
coefficients of controllable load aCL, bCL are set as $0.33/kWh and $0.05
based on the information provided in [21]. The lower and upper limits
for exchanged power capacity in the MG are ± 500 kW, and the values
are ± 1500 kW in the MGC. The parameters related to CDGs of each
microgrid and MGC are tabulated in Table 1. BESS parameters in mi-
crogrids and MGC are shown in Table 2. The simulation is coded on a
64-bit PC with 2.40 GHz processor and 8 GB RAM using MOSEK toolbox
[30] in MATLAB platform.

Fig. 3 denotes the day-ahead forecasted electricity load, RESs gen-
eration, and electricity prices over 24 h on a typical day, which is based
on data from the Australian Energy Market Operator [33]. Notably, in
Fig. 3(a), the electricity load and RESs generation refer to the cumu-
lative value in three microgrids. As clearly observed from Fig. 3(a),
there is energy surplus during the daytime and energy shortage during
night-time periods. For Fig. 3(b), the electricity price between micro-
grids and the MGC is determined by the bilateral contract, which is a
fixed value even in the real-time market. As for the electricity price
between the MGC and the distribution network operator (DSO), the
value is forecasted and uncertain in the real-time market.

5.2. Results and discussion

To verify the effectiveness of the proposed approach, two cases are
compared: (i) Case 1: An uncoordinated operation strategy. The in-
dividual microgrid operates strategically as the price-taker in the
electricity market, aiming to minimize their operation costs. The system
total operation cost is the summation of individual’s cost. The im-
balance cost is calculated after the realization of scenarios. (ii) Case 2:

Table 1
Parameters of CDGs in each microgrid and MGC [31].

Parameters Controllable distributed generators

MG1 MG2 MG3 MGC

aCG, bCG ($/kWh) 0.30, 0.05 0.22, 0.03 0.43, 0.04 0.31, 0.06

PCG, PCG (kW) 0, 200 0, 180 0, 160 0, 500

RampCG
Up, RampCG

Down (kW/h) 80, 85 75, 75 70, 80 220, 230

SUCCG, SDCCG ($) 0.32, 0.15 0.34, 0.18 0.35, 0.15 0.30, 0.20

First Sta e: Da -ahead O timal Scheduling y p gFirst Stage: Day-ahead Optimal Scheduling

Upper Level EMSLower Level EMS

i=1

Start

Is (i>No. of MGs)

Input Data
Electricity Price, CDG,
Load, BESS, and RES

(Cost & Capacity)

MGi EMS Runs Local
Optimization in Eq. (18)

Considering DR Programs

If (Non-controllable Load >Suppy)

Inform MGC EMS about
Shortage Amount

Yes

Inform MGC EMS about
Surplus Amount

No
i=i+1

seYoN

Input Data

Scenario Generation and
Reduction of RESs

Scenario Generation and
Reduction of Electricity Load

Scenario Generation and
Reduction of Electricity Price

CDG and
BESS(Cost &

Capacity)

Inclusion of Risk Aversion
Parameters

MGC EMS Runs Global
Optimization in Eq. (23)

S

Is (t=24)No

t=t+1

Yes

Input the Actual
Realization of
Uncertainties

t=1

Solve the Formulated Dispatching
Model in Eq. (31)

Output the First Interval Scheduling
Result and Move Forward the Time

Window

Is (t=288)

t=t+1

No

Calculate the Imbalance Cost
Through the Whole Scheduling

Intervals

Yes

End

Second Sta e:g
Dis atchinp g

Second Stage:
Dispatching

t=1

Fig. 2. Flowchart of proposed multi-time scale energy management strategy.

Table 2
Parameters of BESSs in each microgrid and MGC [32].

Parameters Battery energy storage systems

MG1 MG2 MG3 MGC

ICES ($),
LCN (times)

80 ER
ES , 2000 80 ER

ES , 2000 80 ER
ES , 2000 80 ER

ES , 2000

ER
ES , EINIT

ES (kWh) 200, 50 180, 40 220, 60 420, 150

P ES Dis, , P ES Chr,

(kW)

150 125 160 200

SOC , SOC 20%,80% 20%,80% 20%,80% 20%,80%

ηES Dis, , ηES Chr, 0.95, 0.97 0.98, 0.96 0.95, 0.95 0.98, 0.95

Fig. 3. Day-ahead forecasted profiles (a) forecasted electricity load and RESs
generation (b) forecasted electricity prices.
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The proposed networked microgrids scheduling approach.
Fig. 4(a) demonstrates the exchanged power scheduling results in

three microgrids in Case 1. The exchanged power schedules in co-
ordinated mode are presented in Fig. 4(b). In uncoordinated mode,
microgrids will exchange power directly with distribution system op-
erator without the coordination of MGC. In the figure, a positive value
means MGs have surplus energy and can sell it to the distribution
system operator/MGC, while a negative value denotes that MGs have a
shortfall and need to buy the corresponding amount with real-time
electricity price externally. As observed, microgrids in Case 2 have
more surplus energy over the whole periods. By trading power in the
MGC, MGs can support each other with a lower operation cost. As
shown in Fig. 4(b), MG1 and MG2 sells the surplus energy most of the
time during the day, while MG3 needs to purchase energy at most
periods.

By trial and error methods [20], the weighting factor ϖ is set to be
3.6 in this paper. The system operation cost distributions in day-ahead
market is illustrated in Fig. 5, which includes uncoordinated microgrids
overall operation cost distribution and networked microgrids operation
cost distribution. In the proposed control scheme, after the local opti-
mization, the exchanged power value is sent to the upper level as
constraints for global optimization. For the upper level EMS, the cor-
related scenarios of electricity load, RESs outputs, and electricity prices
are based on the day-ahead data. The mean operation cost in Case 2 is
−$347.92 and the standard deviation is 93.35. In contrast, the mean
operation cost in Case 1 is only −226.70 and the standard deviation is
97.14, which is higher than the standard deviation in Case 1. In addi-
tion, the Value-at-Risk (VaR) at the 95% confidence level is adopted for

evaluating the risk of different operation strategies. The VaR-95%
means the expected value of the 5% scenarios with the lowest operation
cost, which is −$184.33 in Case 2 and −$52.63 in Case 1.

The power scheduling results of the BESS, CDG and controllable
load in both cases in day-ahead market are shown in Fig. 6. In both
cases, the BESS works in charging mode when electricity prices are
relatively lower (i.e. early morning and late afternoon). Instead, BESSs
are discharging at morning and evening peak periods, when electricity
prices are relatively higher. Therefore, the profits made by BESSs are
derived from the differences between on-peak and off-peak periods. It
can be observed that more controllable load and CDG are used in Case
2. This is because for networked microgrids operation, CDGs and con-
trollable load are more frequently used to balance the power balance.
Through the coordinated operation of various components of the mi-
crogrids, the total power production follows the load curve.

Fig. 7 illustrates the exchanged power between the system and the
distribution system operator in deterministic day-ahead scheduling,
risk-controlled day-ahead scheduling, and real-time dispatch under two
cases. Due to the inclusion of risk hedging parameters in risk-controlled
day-ahead scheduling, the deterministic scheduling has more surplus
energy for selling and less shortage amount for purchasing in both
cases. The deviations between real-time exchanged power and risk-
controlled day-ahead exchanged power are caused by the dynamic
fluctuations of RESs in real time, and the forecast errors in electricity
load and electricity price. Compared to Case 1, the results in Case 2
have more surplus power to trade in the electricity market. Hence, more
profits are expected via the proposed approach. The real-time com-
munity BESS state of charge status change is denoted in Fig. 7(b). Si-
milarly to day-ahead results, the BESS charging/discharging status
corresponds to the real-time electricity price change.

(a)Case 1 

(b)Case 2 

Fig. 4. Exchanged power results in microgrids in Case 1 and Case 2.
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Fig. 5. Distributions of system operation cost in day-ahead market in Case 1
and Case 2.
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The expected operation costs in the day-ahead and real-time mar-
kets for both cases are given in Tables 3 and 4. It can be found that the
net operation cost in Case 1 is −$211.87 and the net operation cost in
Case 2 is −$331.558. Therefore, more profits can be made by the
proposed approach and the economic superiority is verified.

6. Conclusions and future research challenge

This paper proposes a two-stage, i.e. an hourly day-ahead sche-
duling and 5-min real-time dispatch, energy management strategy for
networked MGs in the presence of high renewable penetration. In the
day-ahead scheduling stage, a hybrid energy management system
control method is adopted considering the hierarchical structure of
networked microgrids The control objective is to minimize the opera-
tion cost on a daily basis and the operation cost variations are captured
by incorporating mean-variance Markowitz theory into the objective
function. Uncertainties on renewable energy resources output, elec-
tricity load, and electricity price are addressed in the first stage. In real-
time dispatch stage, the objective is to minimize the imbalance cost
given the deviations in the day-ahead and real-time markets. According
to the simulation results, the proposed method identifies a techno-
economic plan for network microgrids under the regulation of micro-
grid community as well as provides a risk-hedging strategy. Compared
with previous research, it is advantageous in, (1) adopting a hybrid
energy management system for networked microgrids with the pre-
sence of microgrid community; (2) in depth analyzing the risks of low
profit scenarios by incorporating mean-variance Markowitz theory
based risk factors; (3) comprehensively evaluating uncertainties in the
operation system and mitigating dynamic fluctuations of renewable
resources in real-time dispatch stage.

Considering current testing system is in an academic situation, fu-
ture research can be done towards more complex practical systems. In

addition, with more microgrids participating in the energy trading
system, a blockchain based transactive energy platform can be designed
to efficiently share resources in a peer-to-peer manner [34].
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Table 3
Operation cost for microgrids components in Case 1.

CDG BESS Controllable load Total
Expected operation cost

($)
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Table 4
Operation cost for microgrids components in Case 2.

CDG BESS Controllable load Total
Expected operation

cost ($)
−164.907 −98.8394 −89.6634 −353.41

Imbalance cost ($) 4.2996 1.1404 16.4120 21.85217
Net operation cost ($) −160.608 −97.699 −73.2513 −331.558
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